Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The roles of PI3K/Akt signaling pathway in regulating MC3T3‐E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces

Identifieur interne : 002836 ( Main/Exploration ); précédent : 002835; suivant : 002837

The roles of PI3K/Akt signaling pathway in regulating MC3T3‐E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces

Auteurs : Ying-Xin Gu [République populaire de Chine] ; Juan Du [République populaire de Chine] ; Mi-Si Si [République populaire de Chine] ; Jia-Ji Mo [République populaire de Chine] ; Shi-Chong Qiao [République populaire de Chine] ; Hong-Chang Lai [République populaire de Chine]

Source :

RBID : ISTEX:4E8E6AF84ED1C2B2A6C4C86483AB9016EA7ADA51

Descripteurs français

English descriptors

Abstract

Chemical modification to produce a hydrophilic microrough titanium (Ti) implant surface has been shown to increase osseointegration compared with microrough topography alone. This study aimed to investigate the roles of PI3K/Akt signaling pathway in regulating proliferation and differentiation of osteoblasts in response to surface microroughness and hydrophilicity. Ti disks were manufactured to present different surface morphologies: a smooth pretreatment surface (PT), a rough hydrophobic surface that was sand‐blasted, large‐grit, acid‐etched (SLA), and an SLA surface with the same roughness that was chemically modified to possess high wettability/hydrophilicity (SLActive/modSLA). MC3T3‐E1 cells were cultured on these substrates with or without LY294002, a PI3K inhibitor, and their behaviors, including cell viability (MTT colorimetric assay), alkaline phosphatase (ALP) activity, and osteogenic genes expression of osteopontin (OPN) and osteocalcin (OCN) were measured. Western blot was applied to detect the expression of PI3K/Akt signal pathway proteins. The results showed that a decrease in osteoblast proliferation associated with the Ti surfaces (SLActive > SLA > PT) correlated with an increase in activity of the osteogenic differentiation markers ALP. The peak of ALP activity appeared earlier at 7 days for the SLActive surfaces compared with the SLA and PT surfaces. Osteoblast proliferation, as well as the level of p‐Akt, was significantly inhibited by LY294002 in all three Ti surfaces. The top value of ALP activity was increased with the inhibition of PI3K/Akt signaling pathway while the time of the peak appeared was not advanced. The expression levels of OPN and OCN were upregulated by the effect of surface roughness and hydrophilicity, which were further enhanced by LY294002. In conclusion, osteogenic responses to SLActive surface were moderately better than the SLA surface and protein expression studies indicated that PI3K/Akt signaling activation may be responsible for this increased osteogenic differentiation. Surface microroughness and hydrophilicity may affect osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation through PI3K/Akt signaling pathway. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 748–754, 2013.

Url:
DOI: 10.1002/jbm.a.34377


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The roles of PI3K/Akt signaling pathway in regulating MC3T3‐E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces</title>
<author>
<name sortKey="Gu, Ying In" sort="Gu, Ying In" uniqKey="Gu Y" first="Ying-Xin" last="Gu">Ying-Xin Gu</name>
</author>
<author>
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
</author>
<author>
<name sortKey="Si, Mi I" sort="Si, Mi I" uniqKey="Si M" first="Mi-Si" last="Si">Mi-Si Si</name>
</author>
<author>
<name sortKey="Mo, Jia I" sort="Mo, Jia I" uniqKey="Mo J" first="Jia-Ji" last="Mo">Jia-Ji Mo</name>
</author>
<author>
<name sortKey="Qiao, Shi Hong" sort="Qiao, Shi Hong" uniqKey="Qiao S" first="Shi-Chong" last="Qiao">Shi-Chong Qiao</name>
</author>
<author>
<name sortKey="Lai, Hong Hang" sort="Lai, Hong Hang" uniqKey="Lai H" first="Hong-Chang" last="Lai">Hong-Chang Lai</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4E8E6AF84ED1C2B2A6C4C86483AB9016EA7ADA51</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/jbm.a.34377</idno>
<idno type="url">https://api.istex.fr/document/4E8E6AF84ED1C2B2A6C4C86483AB9016EA7ADA51/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002672</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002672</idno>
<idno type="wicri:Area/Istex/Curation">002672</idno>
<idno type="wicri:Area/Istex/Checkpoint">000389</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000389</idno>
<idno type="wicri:doubleKey">1549-3296:2013:Gu Y:the:roles:of</idno>
<idno type="wicri:Area/Main/Merge">002848</idno>
<idno type="wicri:Area/Main/Curation">002836</idno>
<idno type="wicri:Area/Main/Exploration">002836</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The roles of PI3K/Akt signaling pathway in regulating MC3T3‐E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces
<ref type="note" target="#fn2"></ref>
</title>
<author>
<name sortKey="Gu, Ying In" sort="Gu, Ying In" uniqKey="Gu Y" first="Ying-Xin" last="Gu">Ying-Xin Gu</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Oral and Maxillo‐Facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Oral and Maxillo‐Facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Si, Mi I" sort="Si, Mi I" uniqKey="Si M" first="Mi-Si" last="Si">Mi-Si Si</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Oral and Maxillo‐Facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mo, Jia I" sort="Mo, Jia I" uniqKey="Mo J" first="Jia-Ji" last="Mo">Jia-Ji Mo</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Oral and Maxillo‐Facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qiao, Shi Hong" sort="Qiao, Shi Hong" uniqKey="Qiao S" first="Shi-Chong" last="Qiao">Shi-Chong Qiao</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Oral and Maxillo‐Facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lai, Hong Hang" sort="Lai, Hong Hang" uniqKey="Lai H" first="Hong-Chang" last="Lai">Hong-Chang Lai</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Oral and Maxillo‐Facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Correspondence address: Department of Oral and Maxillo‐Facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="ISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<imprint>
<biblScope unit="vol">101A</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="748">748</biblScope>
<biblScope unit="page" to="754">754</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-03">2013-03</date>
</imprint>
<idno type="ISSN">1549-3296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkaline phosphatase</term>
<term>Alkaline phosphatase activity</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bone apposition</term>
<term>Bone formation</term>
<term>Cell cycle</term>
<term>Cell differentiation</term>
<term>Cell response</term>
<term>Cell viability</term>
<term>Chaves neto</term>
<term>Colorimetric assay</term>
<term>Contract grant number</term>
<term>Contract grant sponsor</term>
<term>Control group</term>
<term>Culture medium</term>
<term>Differentiation</term>
<term>Early stage</term>
<term>Expression levels</term>
<term>Further inhibition</term>
<term>Hydrophilic surface</term>
<term>Hydrophilicity</term>
<term>Implant</term>
<term>Important factors</term>
<term>Inhibitor</term>
<term>Institute straumann</term>
<term>Kinase</term>
<term>Lower level</term>
<term>Microroughness</term>
<term>Mineralized matrix production</term>
<term>Mtor inhibitor</term>
<term>Nanog expression</term>
<term>Negative regulator</term>
<term>Online issue</term>
<term>Osteoblast</term>
<term>Osteoblast differentiation</term>
<term>Osteoblast functions</term>
<term>Osteoblast proliferation</term>
<term>Osteogenic</term>
<term>Osteogenic differentiation</term>
<term>Osteogenic genes</term>
<term>Pathway</term>
<term>Pi3k</term>
<term>Pi3k activation</term>
<term>Pi3k inhibitor</term>
<term>Polystyrene plate</term>
<term>Preosteoblast proliferation</term>
<term>Proliferation</term>
<term>Protein expression</term>
<term>Same roughness</term>
<term>Slactive</term>
<term>Slactive surface</term>
<term>Slactive surfaces</term>
<term>Slactive titanium surfaces</term>
<term>Smooth pretreatment surface</term>
<term>Surface microroughness</term>
<term>Surface morphologies</term>
<term>Surface properties</term>
<term>Surface roughness</term>
<term>Time points</term>
<term>Titanium</term>
<term>Titanium surfaces</term>
<term>Western blot</term>
<term>Wieland</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Alkaline phosphatase</term>
<term>Alkaline phosphatase activity</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bone apposition</term>
<term>Bone formation</term>
<term>Cell cycle</term>
<term>Cell differentiation</term>
<term>Cell response</term>
<term>Cell viability</term>
<term>Chaves neto</term>
<term>Colorimetric assay</term>
<term>Contract grant number</term>
<term>Contract grant sponsor</term>
<term>Control group</term>
<term>Culture medium</term>
<term>Differentiation</term>
<term>Early stage</term>
<term>Expression levels</term>
<term>Further inhibition</term>
<term>Hydrophilic surface</term>
<term>Hydrophilicity</term>
<term>Implant</term>
<term>Important factors</term>
<term>Inhibitor</term>
<term>Institute straumann</term>
<term>Kinase</term>
<term>Lower level</term>
<term>Microroughness</term>
<term>Mineralized matrix production</term>
<term>Mtor inhibitor</term>
<term>Nanog expression</term>
<term>Negative regulator</term>
<term>Online issue</term>
<term>Osteoblast</term>
<term>Osteoblast differentiation</term>
<term>Osteoblast functions</term>
<term>Osteoblast proliferation</term>
<term>Osteogenic</term>
<term>Osteogenic differentiation</term>
<term>Osteogenic genes</term>
<term>Pathway</term>
<term>Pi3k</term>
<term>Pi3k activation</term>
<term>Pi3k inhibitor</term>
<term>Polystyrene plate</term>
<term>Preosteoblast proliferation</term>
<term>Proliferation</term>
<term>Protein expression</term>
<term>Same roughness</term>
<term>Slactive</term>
<term>Slactive surface</term>
<term>Slactive surfaces</term>
<term>Slactive titanium surfaces</term>
<term>Smooth pretreatment surface</term>
<term>Surface microroughness</term>
<term>Surface morphologies</term>
<term>Surface properties</term>
<term>Surface roughness</term>
<term>Time points</term>
<term>Titanium</term>
<term>Titanium surfaces</term>
<term>Western blot</term>
<term>Wieland</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemical modification to produce a hydrophilic microrough titanium (Ti) implant surface has been shown to increase osseointegration compared with microrough topography alone. This study aimed to investigate the roles of PI3K/Akt signaling pathway in regulating proliferation and differentiation of osteoblasts in response to surface microroughness and hydrophilicity. Ti disks were manufactured to present different surface morphologies: a smooth pretreatment surface (PT), a rough hydrophobic surface that was sand‐blasted, large‐grit, acid‐etched (SLA), and an SLA surface with the same roughness that was chemically modified to possess high wettability/hydrophilicity (SLActive/modSLA). MC3T3‐E1 cells were cultured on these substrates with or without LY294002, a PI3K inhibitor, and their behaviors, including cell viability (MTT colorimetric assay), alkaline phosphatase (ALP) activity, and osteogenic genes expression of osteopontin (OPN) and osteocalcin (OCN) were measured. Western blot was applied to detect the expression of PI3K/Akt signal pathway proteins. The results showed that a decrease in osteoblast proliferation associated with the Ti surfaces (SLActive > SLA > PT) correlated with an increase in activity of the osteogenic differentiation markers ALP. The peak of ALP activity appeared earlier at 7 days for the SLActive surfaces compared with the SLA and PT surfaces. Osteoblast proliferation, as well as the level of p‐Akt, was significantly inhibited by LY294002 in all three Ti surfaces. The top value of ALP activity was increased with the inhibition of PI3K/Akt signaling pathway while the time of the peak appeared was not advanced. The expression levels of OPN and OCN were upregulated by the effect of surface roughness and hydrophilicity, which were further enhanced by LY294002. In conclusion, osteogenic responses to SLActive surface were moderately better than the SLA surface and protein expression studies indicated that PI3K/Akt signaling activation may be responsible for this increased osteogenic differentiation. Surface microroughness and hydrophilicity may affect osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation through PI3K/Akt signaling pathway. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 748–754, 2013.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Gu, Ying In" sort="Gu, Ying In" uniqKey="Gu Y" first="Ying-Xin" last="Gu">Ying-Xin Gu</name>
</noRegion>
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
<name sortKey="Lai, Hong Hang" sort="Lai, Hong Hang" uniqKey="Lai H" first="Hong-Chang" last="Lai">Hong-Chang Lai</name>
<name sortKey="Lai, Hong Hang" sort="Lai, Hong Hang" uniqKey="Lai H" first="Hong-Chang" last="Lai">Hong-Chang Lai</name>
<name sortKey="Mo, Jia I" sort="Mo, Jia I" uniqKey="Mo J" first="Jia-Ji" last="Mo">Jia-Ji Mo</name>
<name sortKey="Qiao, Shi Hong" sort="Qiao, Shi Hong" uniqKey="Qiao S" first="Shi-Chong" last="Qiao">Shi-Chong Qiao</name>
<name sortKey="Si, Mi I" sort="Si, Mi I" uniqKey="Si M" first="Mi-Si" last="Si">Mi-Si Si</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002836 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002836 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:4E8E6AF84ED1C2B2A6C4C86483AB9016EA7ADA51
   |texte=   The roles of PI3K/Akt signaling pathway in regulating MC3T3‐E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022